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SUMMARY

Myon is a humanoid robot where each joint is controlled independently by a supervised bio-inspired artificial
neural network inducing the correction of a number of distinct actions depending on the excitation. One of
the control strategies, which the network, located within a certain joint, may implement, allows a controlled
motion of the limb connected to the joint from a stable state up to a prescribed height and the maintenance
of the new position afterwards. The original approach adopted for this control operation is stable and robust
but results in slow and energy-inefficient limb movements. This work proposes a novel, low-power, time-
efficient and adaptive memristor-centred control strategy for the aforementioned robot action. The idea is
based upon the exploitation of the combined ability of memristors to store and process data in the same
physical location. The part I paper sets the theoretic foundations for the memcomputing paradigm to robot
motion control, while the part II manuscript shall demonstrate its benefits over the original approach in terms
of energy, and speed, and the inheritance from the standard strategy of a good level of adaptability to changes
in the limb load on the basis of the analysis of circuit-theoretic models adopting an ideal and a real memristor,
respectively. Copyright © 2017 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Before 1971, only three fundamental passive one ports were known in circuit theory [1], namely, the
resistor, in which voltage v and current i are constrained to obey a law of the form fR(v, i) = 0, the capac-
itor, characterised by a constitutive relationship involving voltage v and charge q, namely, fC(q, v) = 0,
and the inductor, whose dynamic operation is governed by a rule involving current i and flux 𝜑, that
is, fL(𝜑, i) = 0. In 1971, through symmetry arguments, Chua [2] theoretically predicted the existence
of a fourth fundamental passive two-terminal device, which he named memory resistor (memristor for
short), establishing a nonlinear relation between charge q, the time integral of current (called current
momentum in [3]), and flux 𝜑, the time integral of voltage (called voltage momentum in [3]), in the
form fM(𝜑, q) = 0. For more than 35 years, research in the area of memristors involved only theoretical
aspects. In 2008, a team from Hewlett Packard Labs, led by senior fellow R. S. Williams, announced
the development of a two-terminal nanoscale device featuring some of the fingerprints of memristor
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behaviour [4]. Since then, besides some major advancement in memristor theory [5–10], the potential
benefits associated with the adoption of memristors [11, 12] in future electronics have been extensively
investigated in various areas of circuit design, including oscillators [13–16], neuronal networks [17–21],
tunable amplifiers [22], adaptive filters [23, 24] and control circuits [25, 26]. Leveraging the pecu-
liar nonlinear dynamics of memristors [27], originating from distinct physical mechanisms, depending
upon constitutive material, fabrication process and operating regime, novel approaches to data sens-
ing [28] and processing [29, 30] may be developed and implemented in circuit form. Furthermore, the
unique capability of nonvolatile memristors to store and process data in the same physical location can
pave the way towards the design of innovative memcomputing (i.e. memory and computing) hardware
systems [31] resolving the throughput limitation of classic von Neumann architectures.

The realisation of humanoid robots is described [32] as the challenge par excellence for researchers
in the field of artificial intelligence and robotics. Currently, a great deal of studies are devoted to the
development of robots capable to perform a number of different tasks [33] depending upon external
stimuli. Among the various functionalities, a humanoid robot should be endowed with the ability to lift
a limb from a rest position up to a specific height, and to keep it there till the completion of a certain
operation [34] (the focus of this research work), as well as the capability to exhibit a stable and fast
walking pattern [35, 36] are definitely worth a mention.

Typically, the control of a humanoid robot is based upon the selection of a certain strategy, the devel-
opment of a model for its implementation, the coding of the mathematical description through a proper
programming language and the final code execution through the use of suitable microcontrollers. In the
humanoid robot Myon [37] (Figure 1(a)) a completely different control approach is employed. Each
of its joints hosts a cognitive densorimotor loop (CSL), trained – through an attractor-based behaviour
control learning scheme [38] – to implement various control strategies depending upon how it is stim-
ulated. The supervised loop is an innovative bio-inspired artificial neural network (ANN) exploiting
only the inherently complex behaviour of an ensemble of analogue electrical circuits, based upon the
standard complementary metal oxide semiconductor (CMOS) technology, to control the associated
joint independently from the rest of the robot body through the crucial interaction with a motor with

Figure 1. (a) The humanoid robot Myon. (b and c) An inverted pendulum, the simplest model of one of
Myon’s joint-limb structures, during a typical sense phase (b) and drive phase (c) under the hypothesis
𝛾 ∈ [0, 𝜋] (r⃗ = l sin 𝛾 e⃗x + l cos 𝛾 e⃗y is the position vector). Apart from an initial short time interval, in which,
driven by the momentum gained in the previous drive phase, the load ascent may persist, the pendulum
typically moves downwards in a sense phase (b); thus, the sensed signal v denotes a rate of descent, which
is negative (positive) for clockwise (counterclockwise) rotation under 𝛾 ∈ [0, 𝜋] (𝛾 ∈ [−𝜋, 0]). Because
the sensed signal is integrated with negative sign in the sense phase, a net positive (negative) direct current
voltage is available at the integrator output at the end of the sensing operation under 𝛾 ∈ [0, 𝜋] (𝛾 ∈ [−𝜋, 0]).
This direct current voltage is applied to the motor input stage in the drive phase, and, thanks to the sign
reversal introduced by the cognitive sensorimotor loop feedback loop, results in the generation of a torque M⃗
counteracting the effects of the gravitation torque M⃗L (c). Induced by the acceleration gained in the preceding
sense phase, the pendulum descent may go on initially for a little while, but the pendulum typically moves
upwards in a drive phase (c); thus, M⃗ also goes against the friction torque M⃗F . [Colour figure can be viewed

at wileyonlinelibrary.com]
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combined sensor–actuator role [34]. One of the CSL strategies, the so-called ‘Go-Against-the-Force’
(GAF) paradigm, leverages the nonlinear dynamics of an electromechanical system to induce a limb to
move from a rest location up to a desired height, which is further stabilised thereafter. As mentioned
earlier, a key role in the electromechanical system is played by a motor, which alternately plays the
role of a sensor and of an actuator, during consecutive sense and drive phases, respectively. In sensing
mode, the pendulum typically falls down because of gravitation, while a physical quantity proportional
to its angular velocity is sensed via the motor electromotive force and integrated with negative sign. In
driving mode, the direct current (DC) voltage at the output of the inverting integrator at the end of the
previous sense phase is applied to the armature node of the rotor stage, resulting in the generation of a
motor torque, which counteracts and wins over the gravitation torque, lifting the pendulum up.

Despite being stable and robust [39], the GAF control paradigm has its own weaknesses when it
comes to energy efficiency and speed. Here, we demonstrate that these issues may be resolved through
the introduction of a novel control strategy, which we name ‘Kick-Fly-Catch’ (KFC) paradigm and
consists of three main phases. In the first kick phase, the system is driven with the maximum possi-
ble DC voltage available to the overall circuit, leading to a fast ascent of the pendulum towards the
target upright position. In the second fly phase, no control is applied to the pendulum, while its angu-
lar velocity, or, equivalently, its axial velocity, is continuously monitored to detect any polarity change
(here, the pendulum has come to a halt and is starting its descent from the same side from which it
ascended) or magnitude increase (here, the pendulum has passed over the upright position and is start-
ing to move down from the other side with respect to the one from which it ascended). Should one of
these two events be detected, the third catch phase, which consists of an iterative cycle of sensing and
driving operations, as established by the GAF strategy protocol, would commence, allowing to stabilise
the pendulum in the upright position. Because here the lengthy and energy-consuming GAF control
paradigm is applied only when the pendulum is about the unstable target state, the proposed procedure
outperforms the standard approach in terms of limb motion speed and energetic cost. A crucial opera-
tion in the proposed paradigm is the derivation of an appropriate estimate for the time duration of the
current kick phase. In order to fulfil this task, we apply a procedure revolving around the memcomput-
ing capability of a nonvolatile memristor [2, 27]. Throughout the previous catch phase, the device is
directly stimulated with the first inverting integrator output voltage. The resulting change in memris-
tance, proportional to the stimulus time integral, updates the device resistance value, which represents
the current estimate for the ‘work’ necessary to lift the pendulum from the stable rest state to the unsta-
ble upright position.‡ During the current kick phase, the time integral of the DC armature voltage is a
linear function of time. When this function equals the aforementioned pendulum lift ‘work’ estimate,
the fly phase sets in.

So, over a catch phase, the memristor computes the non-inverting integration of the stimulus applied
across it through the time evolution of its resistance. However, the memristor is also used to store the
result of this integration from the end of the current catch phase to the beginning of the next catch phase,
when it is retrieved to update the pendulum lift ‘work’ estimate, and, consequently, the time duration
of the next kick phase, demonstrating, especially under perturbations to the system initial conditions or
under modifications in the pendulum geometry, a good degree of adaptability to the external environ-
ment, similarly as in the standard GAF control approach. The non-inverting integration of the inverting
integrator output voltage over a catch phase could also be carried out by a capacitor, which, however,
would not exhibit the same capability of a nonvolatile memristor to keep the information embedded in
its state for a very long time, as could be necessary in case a lengthy time interval would separate the
end of a catch phase from the beginning of the next one. This would happen, for example, in case the
robot is turned off for some time between two consecutive KFC strategy runs.

All in all, in this paper, we provide the theoretic foundations of the innovative memristor-centred
KFC control approach, which allows the robot to exhibit faster movements under lower energy bud-

‡Before the first application of the KFC strategy, the old GAF paradigm is preliminarily run with the pendulum initially
around the stable rest state to derive an initial estimate for the ‘work’ necessary to lift it up to the unstable upright loca-
tion. By applying the inverting integrator output voltage across the nonvolatile memristor throughout the GAF strategy
application, the change in device memristance, proportional to the stimulus time integral, provides an initial estimate for
the aforementioned pendulum lift ‘work’.
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get requirements as compared with the original method, without any compromise on stability and
robustness. The memcomputing capability of a nonvolatile memristor is the key feature allowing the
determination of the optimal time instant at which the kick phase should give way to the fly phase, and
its update over successive applications of the KFC strategy, a clear example of unsupervised learning,
resulting in a control system capable to adapt to perturbations to the initial conditions or to changes in
the limb topology. In the companion part II paper [40], different memristor models – including an ideal
device [41] and a real component [42] from Knowm, Inc. [43] – have been considered in the mathe-
matical description and circuit implementation of the proposed control approach. This work provides
a clear example of the novel functionalities the peculiar nonlinear dynamics of memristors [44] may
endow electronic circuits with, justifying the enormous research efforts currently devoted to the theory
and applications of these devices.

2. GO-AGAINST-THE-FORCE STRATEGY OF THE COGNITIVE SENSORIMOTOR LOOP

As mentioned in Section 1, the CSL is a supervised ANN implemented in circuit form in each joint of
Myon through an ensemble of CMOS-based analogue electronic systems, coupled to a motor, which,
over the course of the control action, acts consecutively as a sensor or as an actuator to provide signals to
be processed by the loop circuitry or to be applied to a given target to correct its operation, respectively.
One of the most important control strategies, which the CSL circuitry may implement independently in
each joint, is the movement of the limb connected to it from a rest position up to a certain height and the
maintenance of this new state thereafter. In this section, we shall describe the classical GAF approach
adopted for this control system in the current implementation of Myon. In Section 2.1, a closed-loop
circuit implementation of the original control strategy shall be presented. In Section 2.2, on the basis
of LTSpice simulations [45] of the circuit implementation, we shall discuss the performance issues of
the GAF paradigm. In Section 3, we shall explain how these issues may be overcome by introducing a
novel control strategy revolving around the peculiar nonlinear dynamics of a nonvolatile memristor. In
the companion part II paper [40], adopting a couple of distinct memristor models, one from the class of
ideal memristors and the other describing the dynamics of a real nanodevice from Knowm, Inc. [43],
circuit theoretic models for the implementation of the KFC control paradigm shall be first developed
and then simulated in the LTSpice simulation environment to validate the theoretical findings provided
in this part I paper.

The GAF control strategy is based upon the consecutive alternation of two phases, consisting of
sensing and driving operations. In order to simplify the analysis, in this manuscript, we shall often refer
to the simplest model of a humanoid robot’s joint-limb structure, consisting of an inverted pendulum
with a rod of length l, forming an angle§ 𝛾 with the unit vector e⃗y and having upper and lower ends
coupled to a motor and to a load of mass m, respectively. Throughout this study, we typically choose the
stable rest state, where 𝛾 = 𝜋, or a position nearby as initial pendulum location, and the unstable upright
point, where 𝛾 = 0, as final desired pendulum destination, but straightforward modifications to the
control scheme may permit the limb to be repositioned elsewhere. Figure 1(b) refers to a typical scenario
during the sense phase, where the pendulum is left free to move autonomously and the motor acts
merely as a sensor, capturing a signal proportional to the load axial velocity¶ v, which is simultaneously
processed by the GAF control loop, taking its time integration while changing its sign, a clear example
of negative feedback action. Figure 1(c) shows a common situation during the drive phase, where the
pendulum is driven by the motor, taking the role of an actuator as it exerts a torque M⃗ to the load‖ to
counteract the effects of the external torque M⃗L due to gravitation and lift the pendulum up.

The block diagram of the classical GAF control technique applied in the current implementation
of Myon to perform the aforementioned limb repositioning is shown in Figure 2(a). The alternating

§Angle values are measured in rad throughout this paper as well as in the companion part II manuscript [40].
¶More precisely, the sensed signal is proportional to the load angular velocity 𝜔, which, however, is proportional to and
has the same sign as the load axial velocity v, as shown later.

‖At the end of the sense phase, the result of the aforementioned inverting integration is a DC voltage, which, applied to
the motor input stage, allows the generation of the ‘GAF’ torque M⃗.
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Figure 2. (a) Block diagram of the classical Go-Against-the-Force strategy a cognitive sensorimotor loop
implements independently in each joint to raise a limb from a rest position up to its maximum height and
to stabilise it there afterwards. The lower (upper) switch position allows the implementation of the sense
(drive) phase of the paradigm. The motor-pendulum system represents the stator, the rotor (composed of
the motor and its input stage) and the loaded rod attached to the motor. (b) Electromechanical model of the
motor-pendulum system. In the sense phase, the voltage at node A is transferred to the input of the inverting
integrator (thus v1 = vA in plot (a)), consequently iA = 0 A, and, typically, a sign-inverting integration of
the load rate of descent, which is negative (positive) under 𝛾 ∈ [0, 𝜋] (𝛾 ∈ [−𝜋, 0]), is available at node at
voltage vint1 in plot (a). In the drive phase, the result of the integration, a net positive (negative) voltage under
𝛾 ∈ [0, 𝜋] (𝛾 ∈ [−𝜋, 0]), is applied as direct current stimulus to node A, enabling the generation of a torque
M⃗ lifting the loaded pendulum up. The torques shown here refer to a particular case of a drive phase, when
the position vector is expressed by r⃗ = l e⃗x, because the loaded rod coupled to the motor forms an angle 𝛾
of 𝜋∕2 = 1.57 with the unit vector e⃗y (here, |ML| attains its maximum possible value). [Colour figure can be

viewed at wileyonlinelibrary.com]

repetition of sensing and driving operations is enabled by a pulse-controlled switch, referred to as Sgaf ,
which configures the motor as sensor or actuator in a sense and drive phase, respectively. Let us explain
the operation of each block in Figure 2(a). The block named motor-pendulum system, including the
stator, the rotor (consisting of the motor and its input stage) and the loaded rod attached to the motor,
has the detailed electromechanical representation shown in Figure 2(b) [46]. The left-placed stage is
the rotor. The motor input stage, also known as armature circuit, is a two port, consisting of the series
between the armature resistance RA and the winding leakage inductance LA, which couples the motor
to the impedance converter of Figure 2(a), used to reduce by a factor 103 the current flowing into its left
terminal with respect to the current flowing into its right terminal while constraining the voltages vsw
and vA to follow each other. The input port voltage of the armature circuit, denoted as vA, is referred
to as armature voltage, because it coincides with the voltage at the armature node A, given that node
G is connected to ground. The armature node plays a fundamental role in the control strategy. In fact,
referring to Figure 2(a), it is the voltage at this node, which is sampled and processed in the sense phase,
when the switch Sgaf is configured in the lower position. Thus, in this phase, the armature circuit input
port current iA, known as armature current, is null, the voltage vA under sensing coincides with the
output port voltage of the armature circuit, denoted as vind , and standing for the electromotive force
falling across the motor terminals, and the load is only subject to gravitation and friction torques M⃗L

and M⃗F, respectively (Figure 1(b)). The motor voltage vind is proportional to the load axial velocity v.
So, effectively, during a sense phase, the control loop of Figure 2(a) typically performs a sign-inverting
integration of the load rate of descent, which is negative (positive) under 𝛾 ∈ [0, 𝜋] (𝛾 ∈ [−𝜋, 0]). The
result of the CSL feedback loop computation at the end of the sense phase, a net positive (negative)
voltage under 𝛾 ∈ [0, 𝜋] (𝛾 ∈ [−𝜋, 0]), is then applied as a DC voltage to the armature node in the
drive phase, when the switch Sgaf in Figure 2(a) is clicked into the upper position, resulting in the flow
of a positive (negative) armature current iA into the motor input stage of Figure 2(b) and leading to the
generation of a torque M⃗ pointing in the same (opposite) direction as (to) the unit vector e⃗z and thus
acting on the load to compensate the gravitation torque and induce its ascent (see the typical scenario in
Figure 1(c)). This clarifies the origin for the name adopted for the standard control paradigm, namely,
‘Go-Against-the-Force’, which highlights the negative feedback action resulting from the use of an
inverting integrator in the CSL circuitry.

The right-placed stator stage in the electromechanical model of the motor-pendulum system of
Figure 2(b), also known as field circuit, is a one port generating a magnetic flux 𝜑, which, as reviewed
shortly, has a direct impact on the electromotive force vind as well as on the torque M⃗, which the
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motor exerts on the load in the drive phase. The field circuit is composed of the series between the coil
inductance LF, its parasitic resistance RF and a voltage source vF. The magnetic flux has expression
𝜑 = LFiF, where iF may be determined by solving the Kirchhoff voltage law (KVL)-based equation
vF = RFiF +LF

diF
dt

under a certain stimulus vF. Assigning a positive DC value to the latter, as is the case
in the system under focus here, 𝜑 is constant and positive at all times. A rod, attached to the motor on
one side and to a load on the other side, is also visuald in Figure 2(b) as it ascends during a drive phase.

Let us now go through the mathematical analysis of the system under control. With reference to
Figure 1(b) and (c), the angular velocity 𝜔⃗ of the pendulum is defined as

𝜔⃗ = 𝜔e⃗z =
r⃗ × v⃗|r⃗|2 = v|r⃗| e⃗z, (1)

where r⃗ = l sin 𝛾 e⃗x + l cos 𝛾 e⃗y and v⃗ identify current position and axial velocity of the load of mass
m, respectively. Equation 1 reveals the proportionality between 𝜔 = −d𝛾∕dt and v, which also share
the same polarity according to 𝜔 = v∕|r⃗|. It is instructive to observe that, under 𝛾 ∈ [0, 𝜋], when the
pendulum descends (ascends) both 𝜔 and v are negative** (positive). Thus, as the pendulum descends
rotating clockwise (counterclockwise) under 𝛾 ∈ [0, 𝜋] (𝛾 ∈ [−𝜋, 0]), the load axial velocity v, here
a rate of descent, is negative (positive). The significance of this observation lies in the fact that the
signal processed over a sense phase is typically proportional to the load rate of descent. As a result, the
sign-inverted integral of the processed signal at the end of the sense phase is a net positive (negative)
voltage, which may be applied as DC stimulus to the armature node in the drive phase, thus leading to
the emergence of a motor torque with positive (negative) M under 𝛾 ∈ [0, 𝜋] (𝛾 ∈ [−𝜋, 0]).

One of the external torques acting on the load at all times, and thus included in Figure 1(b) and (c),
is due to the gravitation force F⃗L = −m ⋅ g ⋅ e⃗y and is expressed by

M⃗L = r⃗ × F⃗L = ML ⋅ e⃗z, (2)

where

ML = −m ⋅ g ⋅ l ⋅ sin 𝛾. (3)

Note that ML is negative (positive) under 𝛾 ∈ [0, 𝜋] (𝛾 ∈ [−𝜋, 0]). The other external torque, coun-
teracting the pendulum movement both in its natural gravitation-induced descent over a sense phase
and in its motor-driven ascent in the course of a drive phase, as shown in Figure 1(b) and (c), is due to
friction and may be described as

M⃗F = MF ⋅ e⃗z, (4)

in which

MF = −Bm ⋅ 𝜔, (5)

with Bm denoting the positive-valued friction coefficient. It is instructive to point out that, under 𝛾 ∈
[0, 𝜋], MF is positive (negative) during the pendulum descent (ascent).†† Importantly, the motor torque
M⃗, acting on the load only in the drive phase, as illustrated in Figure 1(c), is expressed by

M⃗ = M ⋅ e⃗z, (6)

where

M = c ⋅ 𝜑 ⋅ iA, (7)

with c representing the positive dimensionless motor constant. Observe that, under 𝛾 ∈ [0, 𝜋] (𝛾 ∈
[−𝜋, 0]), M is always positive (negative) over a drive phase, resulting in a motor torque M⃗ counteracting

**The common sign of 𝜔 and v is opposite for both descent and ascent cases under 𝛾 ∈ [−𝜋, 0].
††The sign of MF is opposite for both descent and ascent cases under 𝛾 ∈ [−𝜋, 0].
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the action of the gravitation torque M⃗L. As mentioned earlier, this is because, during a drive phase,
the armature current iA is always positive (negative) for 𝛾 ∈ [0, 𝜋] (𝛾 ∈ [−𝜋, 0]), given the negative
feedback action of the CSL control circuitry, that, in the preceding sense phase, typically integrates
and inverts the sign of a negative (positive) rate of descent, thus providing a net positive (negative) DC
voltage at the output of the inverting integrator at the end of the sensing operation, ready to be applied
as DC stimulus to the armature node in the next drive phase.

The moment of inertia J of a joint-limb structure is given by

J = Jmotor + Jlimb ,

where the first contribution is the moment of inertia of the motor, while the second one, expressed by
Jlimb = m ⋅ l2, denotes the limb moment of inertia. We further define M⃗sum = M⃗L + M⃗F + M⃗ as the
total load torque, where M⃗ is only active in the drive phase (note that ML, MF and M are signed real
values). Given that the electromotive force vind falling across the motor terminals is proportional to the
pendulum angular velocity [34] according to

vind = c ⋅ 𝜑 ⋅ 𝜔, (8)

taking into account the differential equation governing the time evolution of 𝛾 , applying Newton’s
law for rotatory motion to the inverted pendulum system (using Eqns 3, 5 and 7) and imposing the
satisfaction of the KVL to the mesh identified by the circuit topology of the rotor stage in Figure 2(b),
the equations of the electromechanical model of the motor-pendulum structure under DC excitation of
the armature node A are found to be

d𝛾
dt

= −𝜔, (9)

d𝜔⃗
dt

= 1
J
⋅ M⃗sum , →

d𝜔
dt

= 1
J
⋅
(
−m ⋅ g ⋅ l ⋅ sin 𝛾 − Bm ⋅ 𝜔 + c ⋅ 𝜑 ⋅ iA

)
, (10)

diA
dt

= 1
LA

vA − 1
LA

⋅ RA ⋅ iA − 1
LA

⋅ c ⋅ 𝜑 ⋅ 𝜔. (11)

Equations 9–11 represent a third-order non-autonomous dynamic system with input vA ∈ R and
states 𝛾 ∈ R, 𝜔 ∈ R and iA ∈ R. In the sense phase of the GAF paradigm, the armature current is null;
thus, the loaded rod is left free to rotate autonomously. As a result, the inverted pendulum structure
reduces to an autonomous second-order system constituted by Eqns 9 and 10 with iA = 0 A (here, the
armature voltage is only sensed by means of the relation vA = vind = c𝜑𝜔).

Looking back to the block diagram of the classical GAF paradigm (Figure 2(a)), let t0 denote the
initial time of a sensing operation, running for a time interval Δtsense . During this phase, the switch
Sgaf is kept in the configuration shown in Figure 2(a), allowing a sign-inverting time integration of the
armature voltage vA to provide the following voltage signal at the output node of the integrator

vint1(t) = vint1(t0) − Kint1 ∫
t

t0

vind (t′)dt′ for t ∈ [t0, t0 + Δtsense ], (12)

where

vint1(t0) = vint1(ti) − Kint1 ∫
t0

ti

vind (t′)dt′, (13)

with ti denoting the initial time of the control paradigm application (note that we always set vint1(ti) =
0 V), and we used the algebraic constraint vA(t) = vind (t), holding over the time interval under con-
sideration, because no current flows through the rotor stage (i.e. iA = 0 A), while Kint1 represents a
positive coefficient inversely proportional to the integrator time constant and thus having s−1 as unit. It
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Figure 3. Block diagram of the overall dynamic system, consisting of the Go-Against-the-Force cognitive
sensorimotor loop-controlled motor-pendulum structure, according to its Laplace domain representation over
the course of a sense phase (a) or drive phase (b) under the assumption 𝛾 ≈ 𝛾̄ = 0. In order to better highlight
the active blocks for each phase, the inactive paths are not shown in the diagrams. The large circles represent
summers. Importantly, the inactive parts in each phase are marked in dotted line style and red colour. [Colour

figure can be viewed at wileyonlinelibrary.com]

is instructive to note that, despite, as mentioned earlier, over a sense phase the inverted pendulum sys-
tem may be described simply by an autonomous second-order system, as defined by Eqns 9 and 10, the
integration operator in the GAF control loop adds a new degree of freedom, so, effectively, the overall
dynamic system is a third-order autonomous system here. During the subsequent drive phase, covering
a time interval Δtdrive , the switch Sgaf of Figure 2(a) is maintained in the complementary mode, driv-
ing the armature node A (Figure 2(b)) with a constant signal equal to the value of the integrator output
voltage at the end of the preceding sense phase, that is,

vA(t) = vint1(t0 + Δtsense)

= vint1(t0) − Kint1 ∫
t0+Δtsense

t0

vind (t′)dt′ for t ∈ [t0 + Δtsense , t0 + Δtsense + Δtdrive],
(14)

which, as should be clear by now, leads to the pendulum ascent thanks to the negative feedback action
of the CSL control loop. The original control approach is based upon a consecutive series of sensing
and driving operations of this kind, which progressively set the pendulum to the upright position. As
pointed out earlier, the name ‘Go-Against-the-Force’ attributed to this paradigm reflects the ‘work’ of
the motor torque M⃗, acting on the load over the drive phases, which aims at counteracting the effects of
the gravitation torque M⃗L. More details on the GAF control technique will be revealed in Section 2.2
during the description of the LTSpice simulations on its circuit implementation, to be presented in
Section 2.1.

In order to gain some further insights into the operation of the system under control, it may be
instructive to derive its Laplace domain representation. As it is standard in the literature, a capital
letter shall be used to indicate the Laplace transform of a signal. For the sake of simplicity, in the
presentation of the Laplace domain model of the overall dynamic system, consisting of the inverted
pendulum controlled by the feedback loop,‡‡ we assume that the angle 𝛾 is very close to the unstable

‡‡The assumption 𝛾 ≈ 𝛾̄ = 0 is considered only for the derivation of the Laplace domain representation of the system under
control, while no constraint on the angle values is imposed later in the numerical analysis of the original CSL-controlled
motor-pendulum structure.
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equilibrium§§ 𝛾̄ = 0; thus, sin 𝛾 ≈ 𝛾 , that is, only small perturbations around the pendulum upright
position are allowed. Letting 𝛾(t0) = 𝛾0,s (𝛾(t0 + Δtsense ) = 𝛾0,d ), 𝜔(t0) = 𝜔0,s (𝜔(t0 + Δtsense ) = 𝜔0,d )
and iA(t0) = iA0,s (iA(t0 + Δtsense ) = iA0,d ), with t0 denoting the initial time of a sense phase and
Δtsense its time duration, the Laplace domain representation of the overall dynamic system, expressed
by Eqns 9–11 for the motor-pendulum structure and by Eqns 12 and 14 for the CSL circuitry, may be
shown in a compact form in Figure 3(a) and (b) for the sense (drive) phase. For each phase, the inactive
paths are kept in the block diagram but highlighted in dotted line style and red colour. In these plots,
switches S1 and S2 change operation mode simultaneously, realising the functionality of the single
switch shown in the general block diagram of the GAF control strategy, presented earlier in Figure 2(a).
Regarding the sense phase, when, looking at Figure 3(a), S1 is clicked into its upper position decoupling
the output of the inverting integrator from the motor input stage, while S2 connects the armature node
A to the input of the inverting integrator, thus yielding iA = 0 A, transforming Eqns 9 and 10 in the
Laplace domain, the electromotive force Vind (s), identically equal to the armature voltage VA(s) (here,
Eqn 11 is not part of the model), is sensed as specified in the formula

Vind (s) = c ⋅ 𝜑 ⋅Ω(s), (15)

where

Ω(s) =
(

s +
Bm

J
−

m ⋅ g ⋅ l

J ⋅ s

)−1

⋅
(
𝜔0,s −

m ⋅ g ⋅ l

J ⋅ s
⋅ 𝛾0,s

)
, (16)

and integrated with negative sign according to the expression

Vint1(s) =
vint10,s

s
−

Kint1

s
Vind (s), (17)

descending from Eqn 12 with the initial condition of the integrator output voltage defined as vint1(t0) =
vint10,s. With reference to the drive phase, when, with reference to Figure 3(b), switch S1 is configured
into its lower position, while switch S2 breaks the inverting integrator path, mapping Eqns 9–11 in the
Laplace domain, the application of the result of the inverting integration of the electromotive force at
the end of the preceding sense phase to the armature node A, that is, letting VA(s) = vint10,d∕s, as follows
from the Laplace domain representation of Eqn 14 after defining

vint10,d = vint1(t0 + Δtsense ), (18)

the pendulum angular velocity Ω(s) is bound to evolve as governed by the following equation:

Ω(s) =
(

s +
Bm

J
−

m ⋅ g ⋅ l

J ⋅ s
+ (c ⋅ 𝜑)2

J ⋅ (RA + s ⋅ LA)

)−1

⋅
(
𝜔0,d −

m ⋅ g ⋅ l ⋅ 𝛾0,d
J ⋅ s

+ c ⋅ 𝜑
J ⋅ s ⋅ (RA + s ⋅ LA)

⋅ vint10,d +
c ⋅ 𝜑 ⋅ LA ⋅ iA0,d
J ⋅ (RA + s ⋅ LA)

)
,

(19)

where iA0,d = 0 A. Because of the negative sign in front of the sign of integration in the expression for
vint1(t0+Δtsense ) (Eqn 14), the motor is eventually induced to rotate in the opposite direction with respect
to its motion at the end of the previous sense phase, leading inevitably to the pendulum ascent. It may be
shown that, taking the Laplace transforms of the expressions for Ω(s) in the sense and drive phases, that
is, Eqns 16 and 19, respectively, choosing appropriate initial conditions for the GAF paradigm (details
are provided later) except for the starting value for 𝛾 , chosen here pretty close to the unstable state to
satisfy the small-angle approximation, the resulting time waveform for 𝜔 undergoes small oscillations
around the null value, as expected from the stabilising action of the control paradigm, and confirmed

§§More precisely, the equilibria of the dynamic system defined by Eqns 9–11 are (𝛾̄ , 𝜔̄, īA) ∈ {(0, 0, 0), (𝜋, 0, 0)}. The first
equilibrium is unstable, while the latter is stable (recall that 𝛾 is defined as the angle between the unit vector e⃗y and the
position vector r⃗).
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Figure 4. Circuit-theoretic implementation of the electromechanical model of the motor-pendulum system
of Figure 2(b). Plot (a) realises the electrical part of the rotor stage. The circuit for the mechanical part of
the rotor stage as well as for the loaded rod attached to the motor is reproduced in plot (b). (c) Circuit for the

calculation of the pendulum angular position.

in LTSpice simulations of a circuit-theoretic model of the controlled motor-pendulum system (see later
for details).

2.1. Circuit-theoretic implementation of the motor-pendulum system under Go-Against-the-Force
cognitive sensorimotor loop control

We are now ready to introduce a circuit¶¶ modelling the application of the GAF control strategy to the
motor-pendulum system, as illustrated in the block diagram of Figure 2(a). First, Figure 4 shows the
circuit realisation of the electromechanical model of the motor-pendulum system shown in Figure 2(b).
Applying the KVL to the one-mesh circuit in plot (a) of Figure 4, referring to the electrical part of the
rotor stage shown in Figure 2(b), one may obtain Eqn 11 provided the current i1 is proportional to the
pendulum angular velocity 𝜔 according to‖‖ i1 = kconv,1 ⋅ 𝜔, with kconv,1 = 1 A s, K1 = kconv,2 ⋅ c ⋅ 𝜑
is a constant with unit V A−1 (kconv,2 = 1 A s−1) and vs1 = 0 V (the only function of this source is
to measure the armature current iA). Note that the voltage across the controlled source represents the
electromotive force falling across the motor in response to its rotation. Importantly, A and G in plot (a)
respectively denote armature and ground node.

The application of the KVL to the one-mesh circuit in plot (b) of Figure 4, modelling the mechanical
part of the rotor stage of Figure 2(b) as well as the loaded rod connected to the motor, results in Eqn 10
under the provision that L1 is proportional to the moment of inertia J of the motor-pendulum system
according to L1 = kconv,3 ⋅ J with kconv,3 = 1 A−2 s−2, K2 = kconv,4 ⋅ c ⋅ 𝜑 is a constant with unit
V A−1, kconv,4 a coefficient with nominal unitary value measured in A−1 s−1, R1 = kconv,5 ⋅ Bm, with
kconv,5 = 1Ω s kg−1 m−2, vs2 = 0 V (this voltage source is merely used for sensing the current i1), and,
finally, f1(vC) = −m ⋅ g ⋅ l ⋅ sin(kconv,6 ⋅ vC) ⋅ kconv,7, where kconv,6 = 1 V−1, while kconv,7 = 1 V s2 kg−1

m−2. Observe that vC models the pendulum angular position according to vC = k−1
conv,6 ⋅ 𝛾 , the upper

(lower) controlled source accounts for the gravitation (motor) torque acting on the load, while the linear
resistor captures the effects of the friction torque counteracting the rod motion at all times.

The circuit in Figure 4(c) is used to compute the time integral of the pendulum angular velocity
𝜔, allowing the derivation of the angle 𝛾 between the rod and the unit vector e⃗y. In fact, this circuit
implements Eqn 9, provided the controlled source generates a current proportional to the pendulum
angular velocity according to i(vs2) = i1, K3 is a dimensionless parameter with nominal unitary value
and capacitor Cpos is set to 1 F. Here, Rpos is a very large resistor used to prevent convergence issues
in the LTSpice simulations described in Section 2.2. The motor under study is endowed with a gear
reduction ratio 22:1. Thus, as compared with the nominal case of a motor with no gear reduction ratio
[47], here, the evolution rate of the pendulum angle 𝛾 (the motor torque M) is reduced (increased)

¶¶Despite, for simplicity of exposition, the circuit realisation of the electromechanical model of the original CSL-
controlled inverted pendulum presented here adopts controlled sources, an equivalent operational amplifier-based
implementation with supply levels 0 and 9 V was also employed to evaluate the performance of the GAF control strategy
investigated in this part I paper.

‖‖The unit conversion constants kconv,j with j ∈ {1, 2, 3, 4, 5, 6, 7} are introduced to properly adjust the units of
measurement of addends in the equations of circuits in plots (a), (b) and (c) of Figure 4.
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Figure 5. Circuit theoretic implementation of the electrical part of the rotor stage under Go-Against-the-
Force control. (a) A voltage source vtimer generates a square waveform – in the inset – controlling the operation
of the circuits in plots (b) and (c), particularly the operating modes of the switch Sgaf as well as of the two
controlled sources f2(⋅, ⋅) and f3(⋅, ⋅). (b) Armature circuit endowed with a switch, referred to as Sgaf, coupling
the voltage at the armature node A to the input of the inverting integrator, over the course of a sense phase,
or constraining vA to follow the direct current voltage vint1 over a drive phase. The current-controlled voltage
source K1i1 accounts for the electromotive force across the motor terminals. (c) Circuit implementing the

inverting integration of the armature voltage over a sense phase.

by a factor 22. Thus, looking at the circuit of Figure 4(c), realising the differential equation relating
pendulum angular velocity𝜔 to pendulum angle 𝛾 , the dimensionless coefficient K3 is chosen as 1∕22 =
4.55⋅10−2. Further, with reference to the circuit of Figure 4(b), implementing Newton’s law for rotatory
motion, the numerical value for kconv,4, appearing in the expression for K2, is set to 22.

The implementation of the sensing and driving operations of the GAF control system requires the
modification of the circuit of Figure 4(a), modelling the electrical part of the rotor stage, to allow the
inclusion of an ad hoc closed-loop control system.

The modified circuit, shown in Figure 5, allows to sample the voltage of the armature node A over a
sense phase, or to apply a DC voltage to this same node during a drive phase. The voltage source vtimer
is used to generate a periodic square waveform of amplitude 1 V over the course of a Δtsense-long sense
phase and 0 V during the subsequent Δtdrive-long drive phase (Figure 5(a)). When vtimer > 0.5 V, that
is, over the course of a sense phase, the switch Sgaf in Figure 5(b) is kept in the shown configuration,
allowing to couple the node at voltage vA to the input of the inverting integrator. Concurrently, the
voltage v1 = K1 ⋅ i1 is integrated through the insertion of a current generated by the voltage-controlled
current source f2(vtimer, v1), defined as

f2(vtimer, v1) =
{

−v1∕R2 if vtimer > 0.5 V,
0 A if vtimer ≤ 0.5 V,

(20)

into a capacitor – here called C1 – as shown in Figure 5(c) (with reference to Figure 3(a), the expression
for the integration constant is then Kint1 = 1∕(R2 ⋅C1)). When vtimer ≤ 0.5 V, that is, over the course of a
drive phase, the integrator stops working (the controlled current source in Figure 5(c) drives no current
into the capacitor), while the switch Sgaf in Figure 5(b) assumes the complementary configuration,
connecting the top terminal of the voltage-controlled voltage source f3(vtimer, vint1), generating the signal

f3(vtimer, vint1) =
{

0 V if vtimer > 0.5 V,
vint1 if vtimer ≤ 0.5 V,

(21)

to the node at voltage vA, which is then set to the DC voltage appearing at the integrator output at the
end of the preceding sense phase (note that during the sensing operation, that is, for vtimer > 0.5 V,
the voltage value of f3(vtimer, vint1), here set to 0 V, has no impact on the armature node, because, as
mentioned earlier, the switch Sgaf couples the latter to the node at voltage v1).

All in all, the circuit-theoretic model for the motor-pendulum system under GAF CSL control com-
bines the circuits of Figures 4(b) and (c) and 5. Table I gives numerical values and units for all
parameters of these circuits. The particular motor under consideration in this research is identified by
the code 2619S012SR 22:1 and is fabricated from Faulhaber [48]. The values for parameters RA, LA,
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Table I. Parameters of the circuits of Figures 4(b) and (c)
and 5 for the LTSpice simulations discussed in Section 2.2.

Parameter Value Parameter Value

m 10 g l 10 cm
RA 36.5Ω LA 2.2 mH
K1 19.1 mV⋅A−1 K2 0.42 V⋅A−1

R1 1 μΩ vsj, j ∈ {1, 2} 0 V
L1 100 μH K3 4.55 ⋅ 10−2

R2 330 kΩ C1 10 nF
Cpos 1 F Rpos 1 MΩ
Δtsense 1 ms Δtdrive 9 ms

Jmotor = 68 ⋅ 10−9 kg m2 << Jlimb = m ⋅ l2 = 10 ⋅ 10−3 kg ⋅(10 ⋅
10−2 m)2 = 10−4 kg m2. With reference to Figure 3(a), Kint1 =
1∕(R2 ⋅ C1) = 303 s−1. In the simulation of Figure 7, the val-
ues for m, Δtsense and Δtdrive shall be modified for visualisation
purposes.

Jmotor, c and 𝜑, used in the LTSpice simulations to follow, have been extracted from the data sheet of
this motor. This sheet reports no information about the friction coefficient Bm. As a result, the selec-
tion for the resistance of the linear resistor R1 was based upon a standard value for Bm, specifically
10−6 kg m2 s−1. The values for C1 and R2 were chosen as in the design of a hardware circuit realisation
of the motor-pendulum system under GAF CSL control, which was fabricated in house (see Appendix
A for details) to confirm the accuracy of the LTSpice simulation results presented in Section 2.2.

2.2. LTSpice simulations of the circuit theoretic model of the motor-pendulum system under
Go-Against-the-Force cognitive sensorimotor loop control

With reference to the circuitry in Figures 4(b) and (c) and 5, modelling the overall dynamic system, the
states in the Eqns 9–11 of the motor-pendulum system, that is, 𝛾 , 𝜔 and iA, are respectively modelled
by the voltage vC across capacitor Cpos in Figure 4(c), the current i1 flowing through the resistor R1 in
Figure 4(b) and the current iA flowing through the resistor RA in Figure 5(b). Furthermore, the integrator
output voltage vint1, introducing a new state variable in the sense phase, is modelled by the voltage vint1
across capacitor C1 in Figure 5(c). A numerical simulation of the circuit model of the motor-pendulum
system under GAF control, with initial time ti taken as 0 s, and for initial conditions vC(ti) = 3.04 V,
i1(ti) = 0 A and iA(ti) = 0 A (as mentioned earlier, at the beginning of the control strategy application,
vint1(ti) is always chosen as 0 V), is shown in Figure 6. Plots (a) and (b) respectively show the time
evolution of the integrator output voltage vint1 and of the angle 𝛾 the pendulum forms with the unit
vector e⃗y.

Let us gain some further insights into the dynamics of the controlled system. As the pendulum moves
back towards the stable rest position in the first sense phase, the angular velocity, and, consequently, the
armature voltage, now coincident with the electromotive force, keep negative as they grow in modulus.
Because the gravitation torque ML, reported in Eqn 3, is small when 𝛾 is close to 𝜋 ≈ 3.14, in this first
sense phase, the modulus of the pendulum angular velocity rate (i.e. of d𝜔∕dt = 1∕J ⋅ (ML − MF), as
defined in Eqn 10) keeps limited, and, as a result, the angle 𝛾 gets only a little bit larger than its initial
condition, while the angular velocity and armature voltage moduli remain relatively small, leading
barely to a slight increase in the integrator output voltage. In the subsequent drive phase, a modest
constant voltage equal to the value for vint1 at the end of the sense phase is applied to the armature node
A, leading to the flow of a small positive current iA, which results into a motor torque M winning slightly
over the algebraic sum of the other torques,*** thus allowing the angle 𝛾 to undergo a little decrease.

In all subsequent sensing operations, until the pendulum attains the upright position, 𝛾 goes through a
further reduction (consequently angular velocity and armature voltage assume positive values, whereas

***At the very beginning of a drive phase, the pendulum moves downwards; thus, the friction favours the motor torque
action against gravitation. However, as the pendulum reverses motion direction, the friction torque aligns with the
gravitation torque, and the motor ‘work’ has to counteract the action of both the other two torques.
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Figure 6. Application of the original Go-Against-the-Force control paradigm to the motor-pendulum system
through a LTSpice simulation of the circuitry of Figures 4(b) and (c) and 5. Time evolution of the voltage
vint1 (a), of the angle 𝛾 = kconv,6 vC (kconv,6 = 1 V−1) (b) and of the cost function  (c). As mentioned in the
text, vC(ti) = 3.04 V, that is, 𝛾(ti) = 3.04, i1(ti) = 0 A and iA(ti) = 0 A with ti = 0 s (the initial value of
the integrator output voltage, that is, vint1(ti), is fixed to 0 V). The value for 𝛾th used in the measurement of
the time interval Δt = t|𝛾=𝛾th − t|𝛾=𝛾(ti) the control system needs to lift the pendulum from the initial angular
position up to the threshold angle itself is set to 0.1 (note that t|𝛾=𝛾(ti) ≡ ti). The set of values for all parameters
in the circuit theoretic model of the overall dynamic system is reported in Table I. Particularly, the inverted
pendulum load has mass m = 10 g, accounted for in the expression of the voltage-controlled voltage source

f1(vC) (Figure 4(b)). [Colour figure can be viewed at wileyonlinelibrary.com]

the integrator output voltage decreases) for a while, before the gravitation and friction torques jointly
nullify the pendulum ascending impetus, leading to its inevitable descent thereafter, with a consequent
polarity change in angular velocity, armature voltage and integrator output, as explained earlier. Despite
the non-monotonous behaviour of the time waveform of the armature voltage, as long as 𝛾 keeps below
the value of 𝜋∕2 ≈ 1.57, the total area below this waveform over a Δtsense-long period keeps negative.
Consequently, the net change in the inverting integrator output voltage over a sense phase maintains
its positive sign. It follows that, as 𝛾 gets closer and closer to 𝜋∕2, the applied voltage at node A over
a drive phase is a growing positive constant, and the motor torque counteracts better and better the
algebraic sum of the other two torques, lifting the pendulum up more and more significantly.

When 𝛾 attains the value of 𝜋∕2, the modulus of the gravitation torque ML, the integrator output volt-
age vint1 (Figure 6(a)) as well as the modulus of the angle rate of change, that is, of d𝛾∕dt (Figure 6(b)),
exhibit maxima. For larger values of 𝛾 until the pendulum attains the upright position, the area below the
time waveform of the armature voltage over a sense phase is found to be positive, resulting in a net nega-
tive change in the integrator output voltage. Thus, while keeping a positive sign, vint1 experiences a pro-
gressive decrease in the course of successive sensing operations, leading to a more and more gentle pen-
dulum ascent in the following drive phases, when vint1 keeps unchanged. In fact, should 𝛾 attain exactly
the target value of 0, the integrator output would be null too. Of course, this never happens in prac-
tice. As the pendulum passes over the upright position, the control system operates in a complementary
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fashion, aiming at increasing the angle in an attempt to stabilise the equilibrium 𝛾̄ = 0. So a small
sustained oscillation of the angle 𝛾 around the unstable null value is observed thereafter.

With reference to Figure 6(b), the time interval the GAF control system necessitates to raise the
pendulum from the initial condition 𝛾(ti) = 3.04, close to the stable rest state, where 𝛾̄ = 𝜋, to a certain
threshold position 𝛾th, here set to 0.1, in proximity to the upright position, where 𝛾̄ = 0, is found to be
quite large, that is,

Δt = t|𝛾=𝛾th − t|𝛾=𝛾(ti) = 17.8 s, (22)

where t|𝛾=𝛾(ti) ≡ ti, which, as said earlier, is chosen as 0 s. Furthermore, the GAF control system spends
a considerable amount of energy to change the angle from 𝛾(ti) to 𝛾th. Let us introduce the following
cost function to estimate the ‘work’ associated with the pendulum lift:

(t) = ∫
t|𝛾=𝛾(t)

t|𝛾=𝛾(ti ) |vA(t′)|dt′, (23)

where vA(ti) = 0 V because††† 𝜔(ti) = 0 rad⋅s−1. Plot (c) in Figure 6 shows the time evolution of this
cost function for the simulation under focus. When t = t|𝛾=𝛾th , the numerical value of the cost function
expressed by Eqn 23 is found to be significant, that is,

(t|𝛾=𝛾th ) = ∫
t|𝛾=𝛾th

t|𝛾=𝛾(ti ) |vA(t′)|dt′ = 20.4 V s. (24)

The following section introduces a novel memristor-based strategy, which enables a considerable
reduction in Δt and (t|𝛾=𝛾th ), leading to a substantial improvement in pendulum lift speed with a fur-
ther enviable decrease in power consumption. Before introducing the new strategy, which will further
endow the control system with the capability to adapt to changes in the rod load, let us gain a deeper
understanding of the dynamics of some variables of interest under the application of the original GAF
paradigm to the motor-pendulum system.

Figure 7 shows clearly the operation of the GAF control system over a few successive sense and drive
phases. In order to improve the quality of visualisation, in this simulation, we chose different values
for the load mass m and for the time intervals of a sense phase Δtsense and of a drive phase Δtdrive (see
the figure caption for details). The time evolution of pendulum angular velocity 𝜔, motor voltage vind,
integrator output vint1 and pendulum angle 𝛾 , shown in plots (a), (b), (c) and (d) for initial conditions
vC(ti) = 1.64 V, i1(ti) = 0 A, iA(ti) = 0 A and vint1(ti) = 0 V, with ti = 0 s, agrees well with the
theoretical predictions. As clear from plot (d), the angle 𝛾 is almost half way between stable and unstable
position, that is, is about to go through the value of 𝜋∕2. As explained earlier, over each sense phase
shown in Figure 7, the pendulum rises a bit, driven by the momentum gained in the previous drive phase,
before heading down because of gravitation. It follows that the angular velocity, and, consequently, the
electromotive force keep positive for a while before decreasing towards negative values. Meanwhile, the
integrator output voltage experiences an initial decrease followed by a comparable increase. Similarly,
the pendulum angle initially gets smaller and then undergoes an opposite change. Over the subsequent
drive phase, both angular velocity and motor voltage initially maintain their negative sign and later rise
towards positive values. Meanwhile, as expected, the integrator output keeps constant (the closed-loop
control system performs no integration in the drive phase), whereas the pendulum angle increases for
a while and then goes through a substantial decrease.

We are now ready to introduce a novel CSL control strategy to lift a limb coupled to a joint of Myon
from the stable rest state to the upright position and to stabilise it there afterwards, so as to overcome the
disadvantages of the original GAF paradigm, particularly obvious from a look at the numerical values
of the figures-of-merit Δt and (t|𝛾=𝛾th ), respectively shown in Eqns 22 and 24.

†††The GAF control process starts always with a sense phase, and all initial conditions for pendulum angular velocity 𝜔,
armature current iA and integrator output vint1 are set to 0. The starting value for 𝛾 has to be set to a value different from
𝜋 in the numerical simulations; otherwise, the pendulum would never leave the stable rest state, while in the actual
hardware implementation (Appendix A) 𝛾(ti) may also be chosen as 𝜋, because any tiny noise-induced perturbation
of the pendulum from the stable rest state, unavoidable in practice, would lead to a successful accomplishment of the
control strategy objective.
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Figure 7. Further insights into the dynamics of the Go-Against-the-Force control system. Loci of 𝜔 (a), vind
(b), vint1 (c) and 𝛾 (d) versus a time interval covering a number of consecutive sense and drive phases from a
LTSpice simulation of the circuitry in Figures 4(b) and (c) and 5. Here, in the expression for f1(vC), m = 40 g.
Further, Δtsense = 50 ms and Δtdrive = 100 ms, while the initial conditions are vC(ti) = 1.64 V, i1(ti) = 0 A,
iA(ti) = 0 A and vint1(ti) = 0 V (here, ti = 0 s). The inductor LA in the armature circuit of Figure 5(b) is
responsible for the appearance of spikes in the time waveform of vint1 in correspondence to the switching of
the control system between sense and drive phases. [Colour figure can be viewed at wileyonlinelibrary.com]

3. NOVEL MEMRISTOR-CENTRED KICK-FLY-CATCH CONTROL STRATEGY

The novel memristor-centred KFC strategy proposed in this work is based upon the application of the
maximum principle of Pontryagin [49] to the motor-pendulum system expressed by Eqns 9–11, which
allows to derive an optimal choice for the control voltage vctrl to be applied to the armature node A so as
to induce a time-efficient and energy-efficient movement of a robot’s limb from the stable rest state to
the upright position.‡‡‡ In the application of Pontryagin’s theory, the choice for the control voltage vctrl
was optimised in terms of limb movement speed. The analytic treatment, reported in Appendix B, led
to a three-phase control procedure, which clarifies the origin of the nomenclature, namely, ‘Kick-Fly-
Catch’, adopted to refer to the proposed strategy. Figure 8(a) illustrates the block diagram model of the
motor-pendulum system under the KFC strategy. During the first phase, named kick, the switch Skick−f ly
is flipped into its uppermost configuration, allowing the maximum operating DC voltage vctrl = vctrl,max
to be transferred to the armature node A via an impedance converter, inducing the exertion of the largest
possible motor torque Mmax on the pendulum load, which would then rapidly ascend towards the target
position. The dynamics of the inverted pendulum over a kick phase are illustrated in Figure 8(b). This
phase should ideally come to an end when the pendulum is pretty close to the desired unstable state.
At this point, the second phase, named fly, would commence. Here, the switch Skick−f ly in Figure 8(a)
is clicked into its lowermost position; thus, no control signal is applied to the armature node, whose
voltage vA identically follows the electromotive force vind falling across the motor terminals, and the

‡‡‡It is noteworthy to stress that, similarly as in the original GAF paradigm, the armature node A is supposed to be driven
by a certain control voltage vctrl in control mode, corresponding to a drive phase in the GAF approach, and to assume
the same voltage as the electromotive force vind appearing between the motor terminals under no control, equivalent
to a sense phase in the paradigm revisited in Section 2.
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Figure 8. Block diagram representation of the of the motor-pendulum system under the proposed KFC con-
trol strategy (a). The inverted pendulum over a typical kick phase (b) and fly phase (c) under the hypothesis

𝛾 ∈ [0, 𝜋]. [Colour figure can be viewed at wileyonlinelibrary.com]

pendulum is left free to evolve autonomously towards the final destination. Only gravitation and friction
torques oppose its movement, as depicted in Figure 8(c). During this phase, a nonlinear memory block
with operator G[⋅] [6] (Figure 8(a)) continuously measures sign and modulus of its input voltage vsample,
coincident with the armature voltage vA, thus indirectly monitoring the pendulum angular velocity 𝜔,
or, equivalently, the pendulum axial velocity v. As soon as the armature voltage changes sign (the
pendulum ascent has come to a halt and its inevitable descent is about to start), or increases in modulus
(the pendulum has gone over the upright position and has just commenced to fall from the other side of
the x axis, see Figure 8(c) for reference), the nonlinear memory block in Figure 8(a) outputs a positive
voltage vfly, which clicks the switch Skick−f ly into its middle position, signalling the end of the fly phase.
At this point, the catch phase sets in. Here, an iterative cycle of sensing and driving operations, as
defined by the standard GAF control strategy protocol, stabilises the upright position (see Figure 1(b)
and (c) for a visualisation of the torques acting on the pendulum load during the sense and drive phases,
respectively). With reference to Figure 8(a), the pulse generator-controlled switch Scatch is alternately
flipped into its lower or upper configuration, respectively, allowing to sense the armature node voltage
vA, that is, the motor electromotive force vind, which is coincidentally integrated with negative sign by
the inverting integrator (this is the sensing mode control operation), or to apply a DC voltage equal to the
inverting integrator output at the end of the previous sense phase to the armature node, thus inducing a
motor torque, which, acting on the pendulum mass, lifts it up counteracting successfully the gravitation
and friction torques (the system operates in driving mode then). Very importantly, in the proposed KFC
paradigm, the length and power-consuming sense-and-drive control procedure is applied only when the
pendulum is in the neighbourhood of its final desired state, resulting in a considerable improvement in
terms of time and energy efficiency over the old approach.

By inspecting the model of Figure 8(a), we may notice the presence of a second integrator, which
integrates with positive sign and time constant Kint2 the first inverting integrator output voltage vint1
during the catch phases (the output of the first integrator is grounded over the kick and fly phases). As
explained in more detail later, this new integrating path, absent in the block diagram representation of
the GAF paradigm (Figure 2(a)), allows to estimate the final time of the kick phase, denoted simply
as tf ,k , from the current value of the non-inverting integrator output voltage vint2 (a gain block with
scaling factor Kctrl ⋅ vctrl,max, where Kctrl denotes a suitable positive real constant, allows the appropriate
conversion of a voltage signal into a time variable). The non-inverting integrator output voltage needs
to be stored securely between successive strategy applications in order to be retrieved and updated
over the catch phases. These storage and updating operations, invaluable to adapt the estimation of
the kick phase time duration to changes in the external conditions (e.g. modifications to the pendulum
geometry), are carried out through a simple analogue electronics circuit exploiting the capability of a
nonvolatile memristor to store and process data in the same physical location.
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Remark 1
The idea behind the introduction of the new integrating path arises from the empirical observation that
the value of the integral vint2 of the first inverting integrator output vint1 at the end of a GAF strategy run
with initial pendulum angle 𝛾(ti) ≈ 𝜋 may be considered as an estimate for the ‘work’ necessary to raise
the pendulum from the stable rest state to the target location. As a result, before the first application
of the KFC strategy, the old GAF paradigm is run once to determine a first estimate for the pendulum
lift ‘work’. This is the so-called initialisation step. Because the current value for vint2 is stored securely
until the start of a catch phase, and vint1 is kept equal to 0 V in the preceding kick and fly phases,
the aforementioned pendulum lift ‘work’ estimate may be progressively updated over the catch phase
of each successive application of the KFC strategy. Importantly, during a kick phase, a constant DC
voltage, specifically vctrl,max, is applied to the armature node A; thus, its integral, scaled by a factor Kctrl,
increases linearly with time. Equating this linear function of time to the current pendulum lift ‘work’
estimate allows to the determine the final time of the current kick phase, as shown in the block diagram
model of Figure 8(a). Finally, the initialisation procedure fits the ‘kick’ to the particular geometry
of the pendulum as well as to the initial conditions of the dynamic system under control. In case of
perturbations to initial conditions or modifications in the pendulum geometry, the kick phase duration,
fitted to the nominal case, is no longer appropriate. This possible potential issue is addressed by the
KFC control system, which, throughout a catch phase, updates the pendulum lift ‘work’ estimate by
correcting the current value for the second non-inverting integrator output voltage vint2, allowing to
update the kick phase duration estimate in the following KFC strategy run.

A block diagram model for the motor-pendulum structure under the kick, fly, catch (sense mode)
and catch (drive mode) phases of the innovative KFC control system is depicted in Figures 9(a) and (b)
and 10(a) and (b), respectively. In these four models, all signals are represented in the Laplace domain
(the first letter of their symbols is thus capitalised). Unlike the block diagram description of the motor-
pendulum structure under the original GAF CSL control system (refer to plots (a) and (b) of Figure 3
for the sense and drive phase, respectively), in this block diagram model, no assumption is made on the
admissible range of values for 𝛾 , that is, the small-angle assumption is removed. In the block diagram
of each phase, the inactive paths are marked with a dotted line style and a red colour.

Let us gain a deeper insight into the mechanisms at the basis of the proposed control system
by inspecting thoroughly Figures 9(a) and (b) and 10(a) and (b). The timing of the jth (j ∈ N =
{1, 2, 3,…}) run of the new control strategy is regulated as described next.§§§

(1) At first, the largest admissible value for the control signal vctrl, referred to as vctrl,max, and set
to the maximum operating voltage vB+ in the control circuit, is applied to the armature node
A for a limited time interval, specifically t ∈ [t(j)0,k , t

(j)
f ,k), where the superscript j indicates the

KFC strategy iteration number, and the starting time of this control scheme run, indicated as
t(j)i ≜ t(j)0,k , is reset¶¶¶ to 0 s. This is the kick phase, aiming at inducing a significant decrease in 𝛾 ,
while keeping it larger than 0, ideally.‖‖‖ The block diagram of the KFC strategy over this phase
is shown in Figure 9(a), where, similarly as in Figure 3(a), switch S1 is open, switch S2, here
endowed with one further possible configuration as compared with the diagrams of Figure 3, is
clicked into the uppermost position, whereas switch S3 imposes the maximum value of the control
voltage vctrl to the armature node A, that is, here, vA ≡ vctrl,max. With reference to Figure 9(a)
(more details shortly), a new branch including the final result of a non-inverting integration of
the inverting integrator output voltage, carried out throughout the catch phase of the previous

§§§Throghout this manuscript, the discussion on the KFC strategy assumes a positive-signed ‘kick’ control voltage vctrl =
vctrl,max ∈ R+, leading to a decrease in the pendulum angular position from 𝛾̄ = 𝜋 towards 𝛾̄ = 0. A similar analysis
may be applied mutatis mutandis to the case of a negative-signed ‘kick’ control voltage vctrl = vctrl,min = −vctrl,max ∈
R−, which would raise the pendulum from the negative side of the x axis (refer to Figure 8(b)), that is, from 𝛾̄ = −𝜋
towards 𝛾̄ = 0.

¶¶¶For each j ∈ N = {1, 2, 3,…}, the jth application of the KFC control strategy to the motor-pendulum system starts at
time t(j)i ≜ t(j)0,k = 0 s. The initialisation phase begins at time t(0)i ≜ t(0)0,g.

‖‖‖In case, because of an excessively strong ‘kick’, the pendulum went over the upright position during the kick phase,
the following fly phase would practically be skipped, and the control system would enter the catch phase directly after
the completion of the kick process.
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Figure 9. Block diagram model of the KFC cognitive sensorimotor loop-controlled motor-pendulum struc-
ture according to its Laplace domain representation. Here, no constraint on the range of allowable values for
𝛾 is enforced. The switches’ configurations in plots (a) and (b) allow the implementation of the kick and fly
phases of the paradigm. {⋅} denotes the Laplace operator. The inactive paths of each phase are drawn with

dotted line style and red colour. [Colour figure can be viewed at wileyonlinelibrary.com]

(j − 1)th application of the KFC strategy (for j ∈ N ∶ j ≠ 1, i.e. j ∈ {2, 3,…}) or during the run
of a preliminary GAF paradigm∗∗∗∗, the so-called initialisation phase, carried out offline previous
to the first application of the KFC strategy (here, j = 1), dictates the time instant t(j)f ,k at which
the switch S3 is opened, marking the end of the kick phase of the jth run of the proposed control
scheme.††††

(2) Over the next phase, spanning a time interval t ∈ [t(j)0,f , t
(j)
f ,f ), with t(j)0,f ≡ t(j)f ,k , the pendulum is

allowed to leverage the energy gained in the previous phase to move freely towards the target
position until a time instant at which either the axial velocity vector v⃗ changes direction, that is,
v becomes negative – here the pendulum starts moving downwards – or its modulus |v⃗| = |v|
increases, that is, v becomes more positive – in this case, the pendulum goes over the upright
position and starts its descent from the other side of the x axis (refer to Figure 8(c)). This is the
fly phase, the most energy-efficient operating mode of the proposed strategy. The block diagram
of the KFC paradigm in this phase is shown in Figure 9(b), where switches S1 and S3 are open,
whereas switch S2 is configured in the lowest position to allow an indirect observation of the
pendulum axial velocity v through the monitoring of the armature voltage, here coinciding with

∗∗∗∗The preliminary phase consists of a GAF paradigm run. Alternatively, it may be seen as a catch phase with initial
conditions set as at the start of a GAF control scheme application. Further, a fictitious value is attributed to the control
scheme iteration variable j in this phase, specifically 0. Taking these aspects into account, we may use the following
notation to denote starting and final times of the initialisation phase, respectively, t(0)i ≜ t(0)0,g (which is set to 0 s) and t(0)f ,g
(time at which the pendulum attains the upright position).
††††For simplicity of exposition, the superscript indicating the KFC control strategy iteration number is omitted from
all variables except for those within the non-inverting integrator path, which plays a major role in the performance
enhancement of the novel control strategy over the standard approach.
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Figure 10. Block diagram model of the KFC cognitive sensorimotor loop-controlled motor-pendulum struc-
ture according to its Laplace domain representation. Here, no constraint on the range of allowable values for
𝛾 is enforced. The switches’ configurations in plots (a) and (b) allow the implementation of the sense and
drive operations within a catch phase of the paradigm. {⋅} denotes the Laplace operator. A dotted line style
and a red colour are used to highlight the inactive parts for each phase. In plots (a) and (b), the switch S2 is
clicked in the uppermost (centre) configuration when the sense (drive) phase gives way to the drive (sense)
phase at the end of a Δtsense (Δtdrive)-long sense (drive) mode time interval. [Colour figure can be viewed at

wileyonlinelibrary.com]

the electromotive force, that is, vA ≡ vind. In Figure 9(b), this monitoring action is schematically
modelled through the insertion of a nonlinear memory block with operator G[⋅] [6], driven by
the voltage vsample, coincident with the armature node voltage vA and delivering an output signal

vfly, which would go positive at the time t(j)f ,f , where vA changes sign or increases in modulus, thus
disconnecting the switch S2 from its current position and leading to the end of the jth fly phase.

(3) The original GAF paradigm is finally applied to the inverted pendulum to stabilise it in the upright
position. This is the catch phase, running over a time interval t ∈ [t(j)0,c, t

(j)
f ,c], with t(j)0,c ≡ t(j)f ,f (t(j)f ,c

is the last instant of the KFC control strategy application, which should last as much time as
it is desirable to keep the robot limb in the upright position.‡‡‡‡), and consisting of a cycle of
alternating sensing and driving operations, as explained earlier in Section 2. Figure 10(a) and
(b) respectively refer to the block diagram of a catch phase in sense and drive mode. In plot (a),
switches S1 and S3 are open, while switch S2 is clicked into the centre position to allow the sensing
of the armature voltage (here, vA ≡ vind). In plot (b), switch S1 allows to drive the armature node
with the inverting integrator output voltage at the end of the preceding sense phase within the
cycle of alternating sensing and driving operations within the catch phase of the jth run of the
KFC control scheme, switch S2 is set in the uppermost configuration, while switch S3 is open.
Very importantly, during the whole catch phase, a second non-inverting integrator performs the
time integration of the first inverting integrator output voltage. As explained in the succeeding

‡‡‡‡For each j ∈ N = {1, 2, 3,…}, the jth application of the KFC control strategy to the motor-pendulum system ends at
time t(j)e ≜ t(j)f ,c. The initialisation phase ends at time t(0)e ≜ t(0)f ,g.
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texts, this second integration with its highly influential initial condition§§§§ [9, 29] lies at the core
of the proposed memristor-based control strategy, allowing to optimise the duration of the kick
phase in a subsequent (j + 1)th application of the KFC paradigm.

Referring to the block diagram model of the catch phase, shown in Figure 10, let us gain further
insights into the instrumental role of the second non-inverting integrator path in the proposed control
strategy. The second integrator, with time constant Kint2 measured in unit s−1, introduces yet another
differential equation in the mathematical description of the dynamic system, namely,

dvint2
dt

= Kint2 ⋅ vint1. (25)

Thus, over the course of the jth catch phase, when the original GAF control paradigm is active, the
non-inverting integrator provides the time integration of the inverting integrator output voltage vint1.
This allows the determination of the optimal time instant t(j+1)

0,f = t(j+1)
f ,k at which the fly phase should

commence in a next (j + 1)th application of the KFC strategy. Let us see how.
Importantly, previous to the first run of the KFC control approach, associated to the unitary value

for j, the original GAF paradigm is initially applied to the motor-pendulum system to derive a starting
estimate for t(1)f ,k . This starting procedure is called initialisation phase. It corresponds to the run of a
preliminary isolated catch phase. As anticipated earlier, a fictitious iteration number j = 0 is attributed
to it. At the beginning of such phase, that is, at time t = t(0)i ≜ t(0)0,g, vint2 is set to 0 V. Denoting the

final time of the initialisation phase as t = t(0)f ,g, solving Eqn 25 analytically, the expression for the
non-inverting integrator output voltage at the end of the preliminary phase may be cast as

vint2(t
(0)
f ,g) = vint2(t

(0)
0,g) + Kint2 ∫

t(0)f ,g

t(0)0,g

vint1(t′)dt′, (26)

where vint2(t
(0)
i ) = vint2(t

(0)
0,g) = 0 V. Now, with t(1)i ≜ t(1)0,k denoting the initial time of the first application

of a KFC kick phase, the estimate number 1 for the optimal time instant t(1)f ,k is determined by imposing
the following equality:

Kctrl ∫
t(1)f ,k

t(1)0,k

vctrl(t′)dt′ = vint2(t
(0)
f ,g), (27)

where Kctrl is yet another positive time integration constant with unit s−1. Eqn 27 basically equates
a scaled version of the area under the time waveform of the control voltage applied to the armature
node in the first kick phase to Eqn 26, representing the first estimate for the ‘work’ necessary to raise
the pendulum from the stable rest state to the target location. With t(1)i ≜ t(1)0,k = 0 s, recalling that

vctrl(t) = vctrl,max during a kick phase, the following estimate for the time instant t(1)0,f = t(1)f ,k , at which
the first fly phase should commence, may easily be determined from Eqn 27 (see also the diagram of
Figure 9(a)):

t(1)f ,k = 1
Kctrl ⋅ vctrl,max

⋅ vint2(t
(0)
f ,g). (28)

§§§§It is important to point out that the jth run of the proposed control procedure starts always from a kick phase; thus, t(j)i ≜
t(j)0,k , which, as mentioned earlier, is reset to 0 s for each j ∈ N = {1, 2, 3,…}. The initial conditions for angular velocity
𝜔, armature current iA and first inverting integrator output voltage vint1 are all set to the null value. Unlike the standard
GAF paradigm, here, the initial value for the pendulum angle 𝛾 could be chosen as 𝜋 also in the numerical simulations,
because the ‘kick’ would push the pendulum away from its stable rest state anyways. However, for comparison purposes,
𝛾(t(j)i ) shall be set as in the old strategy. With regard to the second non-inverting integrator output voltage vint2, it needs to
be initialised to its last value at the end of the catch phase in the previous application of the strategy for each j ∈ N ∶ j ≠ 1
or to its last value at the end of the run of the old GAF strategy (initialisation phase) for j = 1. Regarding the initialisation
phase, consisting of a preliminary GAF control run (here, j is 0), it starts at time t(0)i ≜ t(0)0,g, also set to 0 s. The initial

conditions for 𝜔, iA, 𝛾 and vint1 are set to the same values as in a standard GAF control application, but here also vint2(t
(0)
i )

needs to be specified and is taken equal to 0 V.
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Typically the estimate for the time duration of a kick phase depends on the dynamic system initial
conditions and on the rod topology, especially its length and load mass. For constant initial conditions
and fixed values of l and m, the estimate for the time interval of the kick phase number 1 will not undergo
noticeable modifications in subsequent applications of the KFC paradigm. In fact, under these ideal
circumstances, for any j ∈ N ∶ j > 1, the ‘kick’ would be so good that the pendulum would basically
attain the upright position already at the end of the kick phase, implying that the fly phase would have
a time duration of null measure, and that, over the course of a catch phase, vint1 would not depart much
from its initial null value, and, concurrently, vint2 would not be subject to a sensible variation as com-
pared with its value at the end of the preceding (j−1)th catch phase. On the other hand, should the limb
topology undergo modifications or the system initial conditions experience significant disturbances at
some stage, then the last estimate of the kick phase duration would not be appropriate anymore in a
later application of the strategy. However, under these circumstances, a few runs of the KFC strategy
shall lead to a progressive improvement of the incorrect kick phase duration estimate, demonstrat-
ing the capability of the proposed approach to adapt to environmental changes. Let us explain this in
some detail. The second integrator output voltage at the end of a jth catch phase (j ∈ N ∶ j > 1) is
expressed by

vint2(t
(j)
f ,c) = vint2(t

(j)
0,c) + Kint2 ∫

t(j)f ,c

t(j)0,c

vint1(t′)dt′, (29)

where the initial condition, assuming a crucial role in our control strategy and calling for the use of a
memristor (see in the succeeding texts), is given by

vint2(t
(j)
0,c) = vint2(t

(0)
0,g) + Kint2 ∫

t(j)0,c

t(0)0,g

vint1(t′)dt′, (30)

where vint2(t
(0)
0,g) = 0 V. Assuming that, prior to this jth application of the strategy, either the initial

conditions or the rod topology were subject to variations, the jth ‘kick’ would then be imperfect. The
first integrator output voltage would experience a non-negligible variation as it evolves from its initial
null value to its final null value during the jth catch phase – the area under its time waveform over
such phase would be more and more positive (negative) the weaker (stronger) the ‘kick’ were – leading
to a concurrent significant change – specifically a more consistent increase (decrease) – in the second
integrator output voltage the weaker (stronger) the ‘kick’ were, according to Eqn 29. However, this
would lead to a proper correction of the estimate of the duration of a later (j + 1)th kick phase, which,
as shown in the succeeding texts, would be longer (shorter) the weaker (stronger) the jth ‘kick’ were.
With t(j+1)

i ≜ t(j+1)
0,k denoting the initial time of the (j + 1)th application of a KFC kick phase, equating

the area under the curve of the control voltage applied at the armature node in the (j + 1)th kick phase
to the updated jth estimate for the ‘work’ necessary to raise the pendulum from the stable rest state to
the target location (Eqn 29), that is,

Kctrl ∫
t(j+1)
f ,k

t(j+1)
0,k

vctrl(t′)dt′ = vint2(t
(j)
f ,c), (31)

recalling that vctrl(t) = vctrl,max during a kick phase and resetting to 0 s the initial time t(j+1)
i ≜ t(j+1)

0,k , the
corrected estimate for the (j + 1)th kick phase duration is found to be given by (refer to Figure 9(a))

t(j+1)
f ,k = 1

Kctrl ⋅ vctrl,max
⋅ vint2(t

(j)
f ,c). (32)

As anticipated earlier, the weaker (stronger) the jth ‘kick’ were, and the larger (smaller) the estimate
for t(j+1)

f ,k would be, confirming the adaptability of the proposed strategy to changes in the system external
conditions. Similarly as for the storage of the initial condition in Eqn 30, the use of a memristor device
is necessary for the achievement of this adaptability property.

Let us finalise this part I paper stressing up the fundamental role of a memristor in our approach.
Importantly, during the kick and fly phases of a generic (j + 1)th KFC control strategy application,
when the non-inverting integrator gets inactive (a similar reasoning applies of course when the robot
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goes in sleep mode), the value of the voltage vint2(t
(j)
f ,c) at the end of the catch phase of the previous jth

application of the control scheme needs to be stored in some nonvolatile memory cell, in order to allow
its retrieval and use as new initial condition vint2(t

(j+1)
0,c ) in the non-inverting integration of vint1 during

the (j+ 1)th catch phase. This calculation, also enabled by the same nonvolatile memory cell operating
in computing mode, would then be used to derive an estimate for the (j + 2)th kick phase duration¶¶¶¶

t(j+2)
f ,k in terms of the second non-inverting integrator output voltage vint2(t

(j+1)
f ,c ) at the end of the (j+1)th

catch phase.
An ideal memristor with its nonvolatile memory capability naturally lends itself to perform history-

dependent time integration. Recall in fact that, for an ideal charge-controlled memristor [7], the state
variable is defined as the charge qm flowing through it, which represents the time integral of the device
current im over the whole past, crucially depending upon the initial condition qm(ti) at a given starting
time t = ti, according to

qm(t) = qm(ti) + ∫
t

ti

im(t′)dt′ (33)

A charge-controlled memristor of this kind is ideally suitable for the circuit implementation of the
non-inverting integrator-based branch of the block diagram model of Figure 10. In fact, Eqn 33 may
be used to integrate the inverting integrator output voltage vint1 provided a current proportional to it
(with proportionality factor measured in unit s) is let flowing through the nonvolatile memory cell. The
details are discussed in the companion part II paper‖‖‖‖ [40].

4. CONCLUSIONS AND FUTURE RESEARCH DEVELOPMENTS

The Myon [37] is a humanoid robot in which each joint is controlled independently by a CSL, a built-in
CMOS-based bio-inspired ANN, which is trained through an attractor-based behaviour control learn-
ing scheme [38] to correct a number of distinct actions according to external stimuli. One of the control
strategies implementable by this supervised loop allows the movement of the limb connected to a joint
from a stable rest state up to a certain height and the maintenance of this new position afterwards till
a particular time of interest. The original approach adopted for this control process, known as Go-
Against-the-Force (GAF) paradigm, is robust and stable but results in slow and energy-inefficient limb
movements. The complex nonlinear dynamics [50, 51] and learning capability [28] of memristors [52]
as well as their fascinating ability to process information and store data in the same physical loca-
tion may be exploited to devise innovative circuits complementing and/or extending the functionalities
of conventional CMOS electronic systems. This two-part manuscript proposes a novel, low-power,
time-efficient and adaptive memristor-centre strategy for the aforementioned robot action correction,
named KFC paradigm. In this part I paper, we introduced the theoretical foundations of the novel con-
trol approach pointing out its advantages over the original strategy. In the part II paper [40], a hybrid
CMOS/memristor closed-loop circuit implementation for the new control paradigm is developed, first
using an ideal memristor emulator [41] and then a real memristor nanodevice from Knowm, Inc. [43].
The study presented in [40], based upon numerical simulations of mathematical models, reveals the
benefits of the memristor-based feedback circuit over the original purely CMOS control electronic sys-
tem in terms of energy, and speed, as well as its inheritance from the standard counterpart of a good
level of adaptability to modifications in the limb load. The theoretic and numerical investigations in
this two-part paper justify our long-term commitment to devote further research efforts to the imple-

¶¶¶¶In the actual circuit implementation of the KFC strategy, the estimate for the time duration of a kick phase shall be
carried out online during the kick phase itself (see the companion paper [40] for details).‖‖‖‖Despite the significant progress in memristor technology over the past few years, a device capable to perform an
accurate time integration is not yet available. For this reason, in the circuit implementation of the KFC paradigm based
upon the model of a real nanodevice, we shall adopt a different methodology to derive an estimate for the time duration
of a kick phase. On the other hand, the non-inverting integration-based approach, illustrated in the block diagram model
of Figure 10, shall be followed in the circuit realisation of the KFC paradigm based upon an ideal memristor emulator.
All details are reported in the part II manuscript [40].
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mentation of the KFC control strategy in a practical memristor circuit. All in all, together with other
major works on sensing [53, 54] as well as on memcomputing [55] and logics [56, 57], this study pro-
vides a clear example of the multifaceted opportunities for scientific progress offered by memristors,
besides the mainstream applications regarding nonvolatile memory design and neuromorphic system
development.
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APPENDIX A: IMPLEMENTATION OF THE GO-AGAINST-THE-FORCE PARADIGM ON
HARDWARE

A motor-pendulum system under Go-Against-the-Force (GAF) control was fabricated in house. The
schematics of the hardware realisation of the GAF control loop of Figure 2(a) is shown in Figure A.1.
The hardware GAF cognitive sensorimotor loop system consists of four stages (enclosed within rect-
angular boxes in red dashed line style) and a switch, referred to as Sgaf, and crucially interacts with a
motor with combined sensor–actuator role. The armature voltage is calculated as vA = vmotor1 −vmotor2,
where, unlike the circuit model (refer to Figure 5(b)), as shown shortly, vmotor2 is not the ground volt-
age here. The leftmost stage is the cascade between a voltage divider and a voltage follower consisting
of op amp K1A. The output voltage of this stage is half the maximum operating voltage vB+, set here
to the supply level of 9 V. The voltage follower output signal is applied to the positive input of the op
amp K1B in the second inverting integrator stage, including also a resistor–capacitor parallel one port
in the op amp feedback loop, and to the positive input of the op amp K2B in the rightmost stage, which,
together with the third stage with op amp K2A, implements the impedance conversion. Thus, unlike in
the LTSpice simulations of the circuit-theoretic model of Figure 5(c), here, initially, the integrator out-
put voltage vint1 (as well as vmotor1 and vmotor2) is not null but sits half way between ground and supply,
that is, its level is set to vB+∕2 = 4.5 V at start. In the sense phase, when the switch Sgaf in Figure A.1
is set to the opposite configuration, if the voltage v1, sampled from the left terminal of the motor and
appearing at the right terminal of resistor R5, gets larger than vB+∕2, the inverting integrator output
voltage shall decrease; otherwise, it will increase (in any case vint1 lies in [0 V, vB+] at all times, that is,
unlike in the LTSpice simulations of the circuit-theoretic model of the overall dynamic system, it never
goes negative here). To enable the motor motion in both directions, the voltage at its right terminal is
fixed to vB+∕2 through the use of the last stage. In the drive phase, when the switch Sgaf assumes the

Figure A.1. Schematics of the hardware implementation of the Go-Against-the-Force control system of
Figure 2(a). [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure A.2. (a) Integrated circuit-based set-up of the cognitive sensorimotor loop circuitry implementing
the Go-Against-the-Force strategy to control the motor-pendulum system (the loaded rod attached to the
motor is not shown here). The op amps’ supply levels are 0 and 9 V. (b) Hardware prototype of the inverted
pendulum under Go-Against-the-Force cognitive sensorimotor loop circuitry control. [Colour figure can be

viewed at wileyonlinelibrary.com]

configuration shown in Figure A.1, the third stage transfers the DC voltage appearing at the inverting
integrator output at the end of the sense phase to the left terminal of the motor. If vmotor1 is below vB+∕2,
the armature voltage dropping across the two motor terminals gets negative; otherwise, it goes positive.
As a result, the pendulum may move both in the clockwise and in the counterclockwise direction. The
switch Sgaf, responsible for the transitions between sense and drive phases, is controlled by a pulse-
based voltage signal generated by the timer IC NE555, which is omitted from Figure A.1, whereas is
visible in plot (a) of Figure A.2, showing the integrated circuit-based set-up of the GAF cognitive sen-
sorimotor loop electronic system controlling the motor-pendulum system. The supply levels of the op
amps within the integrated circuits are∗∗∗∗∗ 0 and 9 V. Figure A.2(b) depicts the final working hardware
prototype of the controlled system, including a loaded rod attached to the motor.

APPENDIX B: APPLICATION OF THE MAXIMUM PRINCIPLE OF PONTRYAGIN

The objective of this section is to choose an optimal positive-valued time waveform for the control
voltage vctrl(t) to apply††††† to the armature node A so as to induce a time-efficient and energy-efficient

∗∗∗∗∗In the parameter/input/initial condition set-up, extra care was taken to ensure that no signal within the circuit theoretic
model of the motor-pendulum system under GAF control, that is, within the ensemble of circuits in Figures 4(b) and (c)
and 5, ever exceeded the [0, 9]V range in all LTSpice simulations.
†††††It is noteworthy to observe that the armature node is driven by a certain control voltage vctrl during a control phase,
while assumes the same voltage vind appearing between the motor terminals under no control.
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movement of a robot’s limb from the stable rest state 𝛾 = 0 to the upright position 𝛾 = 𝜋 over the time
interval [ti, te]. Ideally, no further control action would be required after the time instant te, because, due
to static friction, the limb would maintain the upright position after attaining it. In order to achieve the
aforementioned objective, we apply the maximum principle of Pontryagin [49] to the dynamic system
expressed by Eqns 9–11. Let vctrl(t) assume positive values in

[
vctrl,min, vctrl,max

]
over [ti, te]. Here, we

derive an optimal time waveform for the control voltage by minimising the following cost function

 =

te

∫
ti

f0
(
vctrl(t)

)
dt, (B.1)

where f0(⋅) denotes a function to be defined according to the type of optimisation of choice (see later
for details).

In our problem, the state vector x⃗(t) is expressed by

x⃗(t) =
⎛⎜⎜⎝
𝛾(t)
𝜔(t)
iA(t)

⎞⎟⎟⎠ . (B.2)

At the beginning, that is, at t = ti, the pendulum is in the stable equilibrium; therefore,

x⃗(ti) = x⃗i =
⎛⎜⎜⎝
𝜋

0
0

⎞⎟⎟⎠ . (B.3)

The goal position at t = te may be expressed with the vector

x⃗
(
te
)
= x⃗e =

⎛⎜⎜⎝
0
0
0

⎞⎟⎟⎠ . (B.4)

A Hamiltonian function is now defined over t ∈
[
ti, te

]
with the following form:

H
(
x⃗(t), vctrl(t), 𝜓⃗(t), 𝜆0

)
= 𝜆0f0

(
vctrl(t)

)
+
(
𝜓⃗(t)

)T
f⃗
(
x⃗(t), vctrl(t)

)
, (B.5)

where the constant 𝜆0 assumes values in {0, 1}, 𝜓⃗(t) =
(
𝜓1(t), 𝜓2(t), 𝜓3(t)

)T
represents a piecewise

continuously differentiable function, and f⃗ (⋅, ⋅) denotes the time derivative of the state vector, that is,

̇⃗x(t) = f⃗
(
x⃗(t), vctrl(t)

)
, (B.6)

expressed in our case by Eqns 9–11 with vA(t) = vctrl(t). The maximum principle of Pontryagin states
that, under an optimal choice for the control signal‡‡‡‡‡ – let us call it v∗ctrl(t) – ∀t ∈

[
ti, te

]
, there exists

a vector (
𝜆∗0
𝜓⃗∗(t)

)
≠ 0⃗, (B.7)

such that the following conditions are fulfilled:

̇⃗x ∗(t) = f⃗
(
x⃗ ∗(t), v∗ctrl(t)

)
∀ t ∈

[
ti, te

]
, (B.8a)

x⃗ ∗(ti) = x⃗i, (B.8b)

‡‡‡‡‡Throughout this appendix, an optimal choice for a variable is indicated by endowing its symbol with an asterisk
subscript.
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x⃗ ∗(te) = x⃗e, (B.8c)

̇⃗𝜓∗(t) = −

(
𝜕f⃗

(
x⃗∗(t), v∗ctrl(t)

)
𝜕x⃗

)T

𝜓⃗∗(t) ∀ t ∈
[
ti, te

]
, (B.8d)

H
(
x⃗ ∗(t), v∗ctrl(t), 𝜓⃗

∗(t), 𝜆∗0
) ≤ H

(
x⃗ ∗(t), vctrl(t), 𝜓⃗∗(t), 𝜆∗0

)
∀ vctrl ∈

[
vctrl,min, vctrl,max

]
∀ t ∈

[
ti, te

]
,

(B.8e)

H
(
x⃗ ∗ (te

)
, v∗ctrl

(
te
)
, 𝜓⃗∗ (te

)
, 𝜆∗0

)
= 0. (B.8f)

Before proceeding, we need to define a closed form for the function f0(⋅). Choosing the time duration
of the control system operation as the target of our optimisation procedure, it is reasonable to express
f0(⋅) simply as

f0
(
vctrl(t)

) ≜ 1. (B.9)

This selection implies that the cost function  in Eqn B.1 reduces to the time interval Δtctrl = te − ti
of the control phase. Inserting the definition of the Hamiltonian, reported in Eqn B.5, into inequality
B.8e, inserting Eqn B.9 in place for f0(⋅) and using the state Eqns 9–11, ∀ vctrl ∈

[
vctrl,min, vctrl,max

]
and

∀ t ∈
[
ti, te

]
, we obtain:

𝜓∗
2 (t)

c ⋅ 𝜑 ⋅ i∗A(t)−m ⋅ g ⋅ l ⋅ sin(𝛾∗(t))−Bm𝜔
∗(t)

J
+ 𝜓∗

3 (t)
v∗ctrl(t)−RAi∗A(t)−c ⋅ 𝜑 ⋅ 𝜔∗(t)

LA
− 𝜓∗

1 (t)𝜔
∗(t)

≤ 𝜓∗
2 (t)

c ⋅ 𝜑 ⋅ i∗A(t)−m ⋅ g ⋅ l ⋅ sin(𝛾∗(t))−Bm𝜔
∗(t)

J
+ 𝜓∗

3 (t)
vctrl(t)−RAi∗A(t)−c ⋅ 𝜑 ⋅ 𝜔∗(t)

LA
−𝜓∗

1 (t)𝜔
∗(t),

(B.10)

leading to

𝜓∗
3 (t)

v∗ctrl(t)
LA

≤ 𝜓∗
3 (t)

vctrl(t)
LA

. (B.11)

Solving inequality B.11 for the optimal control signal yields§§§§§

v∗ctrl(t) =
{

vctrl,max for 𝜓∗
3 (t) < 0,

vctrl,min for 𝜓∗
3 (t) ≥ 0.

(B.12)

An optimal control [58] can thus be achieved through the use of a switch enforcing the voltage at the
armature node A to transition between the maximum and minimum admissible values for the control
voltage, depending upon the zero crossings of the piecewise continuously differentiable function 𝜓∗

3 (t).
The numerical derivation of the vector 𝜓⃗∗(t), whose time evolution is governed by Eqn B.8d, may be
a prohibitive task. Luckily, it is unnecessary here. In fact it has been recently demonstrated [59] that,
provided the motor torque M is larger than algebraic sum of the other two torques ML and MF at all
times over the control phase, the cost function B.1 may be minimised by inducing a single voltage
transition at the armature node A through the application of a control signal of the following form:

v∗ctrl(t) =

{
vctrl,max for t ∈ [ti, t∗)
vctrl,min for t ∈ [t∗, t∗e ],

(B.13)

§§§§§For 𝜓∗
3 (t) equal to 0 inequality, B.11 holds for any value of vctrl ∈

[
vctrl,min, vctrl,max

]
. Nonetheless, in this case, the

control voltage is set to its lower bound, as reported in Eqn B.12.

Copyright © 2017 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2018; 46:155–183
DOI: 10.1002/cta



A NOVEL MEMCOMPUTING PARADIGM FOR ADAPTIVE ROBOT CONTROL 183

where t∗ is the optimal time instant at which the transition occurs. This time instant should be chosen
so that in the first control phase, the angle 𝛾 would experience a significant decrease from the starting
value of 𝜋 but would keep larger than 0. Only in the second control phase the pendulum would approach
the upright position, which in the ideal case would be maintained thereafter due to static friction. In
the practical case, the inherently unstable equilibrium 𝛾̄ = 0 needs to be stabilised once the pendulum
attains the desired position. On the basis of these theoretical results, omitting the asterisk symbol from
the superscript of the aforementioned optimal time instants for simplicity, in the jth run (j ∈ N ∈
{1, 2, 3,…}), our new control paradigm first calls for the application of the maximum control voltage
vctrl,max (here set to the largest allowable DC voltage vB+

in the control circuit, that is, the supply level

of 9 V) to the armature node A over the time interval t ∈ [t(j)0,k , t
(j)
f ,k) (kick phase), inducing a large

decrease in the angle 𝛾 , which, however, should keep positive in principle.¶¶¶¶¶ Then, over the time
interval t ∈ [t(j)0,f , t

(j)
f ,f ) with t(j)0,f ≜ t(j)f ,k , no control is actually applied to the motor-pendulum system –

thus vA coincides with vind – and the pendulum is left free to continue its ascent towards the upright
position (fly phase). At the time instant t(j)f ,f , when either the pendulum axial velocity vector v⃗ changes
polarity (here, the ‘kick’ was too weak) or increases in modulus (here, the pendulum has passed over
the desired position and is about to move down again from the negative side of the x axis (Figure 8(c))),
the original GAF paradigm is applied to the system to stabilise the pendulum upright position (catch
phase, running over a time interval t ∈ [t(j)0,c, t

(j)
f ,c], where t(j)0,c ≜ t(j)f ,f , and t(j)f ,c denotes the last time instant

where the limb should be kept in the target position). The novel strategy, which we thus name ‘Kick-
Fly-Catch’ paradigm (see the text discussion in Section 3 as well), allows to induce faster robot limb
movements under a lower energy budget as compared with the GAF strategy and further endows the
control system with the capability to adapt to changes in the external environment, a feature, which,
for the sake of truthfulness, is present also in the original approach (see the companion part II paper
[40] for details). It is important to observe that, before the first application of the proposed strategy, a
preliminary run of the old paradigm (initialisation phase) is carried out to derive an initial estimate for
the work necessary to raise the pendulum from the stable state to the unstable position. This estimate
is then used to select the time duration for the kick phase in the first application of the proposed KFC
strategy (see Section 3 for details). As a final note, it is instructive to point out that the problem of
finding a time-optimal control for a given system has been widely studied in the literature. To address
this issue, ‘bang-bang controllers’ [60], in which the control signal switches between a minimum and
a maximum value, are frequently used. It is by now clear that the proposed KFC strategy adopts a
similar principle.

¶¶¶¶¶Note that, should the angle 𝛾 go negative during a kick phase, our control strategy would work fine as well. In fact,
in a scenario of this kind, the fly phase would have a time duration of null measure, and the catch phase would bring the
pendulum back to the upright position, stabilising it there afterwards.
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